Improving Situational Awareness for Precursory Data Classification using Attribute Rough Set Reduction Approach

نویسنده

  • Pushan Kumar Dutta
چکیده

The task of modeling the distribution of a large number of earthquake events with frequent tremors detected prior to a main shock presents us unique challenges to model a robust classifier tool for rapid responses are needed in order to address victims. We have designed using a relational database for running a geophysical modeling application after connecting database record of all clusters of foreshock events from (1998-2010) for a complete catalog of seismicity analysis for the Himalayan basin. by Nath et al,2010. This paper develops a reduced rough set analysis method and implements this novel structure and reasoning process for foreshock cluster forecasting. In this study, we developed a reusable information technology infrastructure, called Efficient Machine Readable for Emergency Text Selection(EMRETS). The association and importance of precursory information in reference to earthquake rupture analysis is found out through attribute reduction based on rough set analysis. Secondly, find the importance of attributes through information entropy is a novel approach for high dimensional complex polynomial problems predominant in geo-physical research and prospecting. Thirdly, we discuss the reducible indiscernible matrix and decision rule generation for a particular set of geographical co-ordinates leading to the spatial discovery of future earthquake having prior foreshock. This paper proposes a framework for extracting, classifying, analyzing, and presenting semi-structured catalog data sources through feature representation and selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy-Rough set Approach to Attribute Reduction

Attribute Reduction has a significant role in different branches of artificial intelligence like machine learning, pattern recognition, data mining from databases etc. This paper deals with reduction of unimportant attribute(s) for classification and decision making, using Fuzzy-Rough set. A survey of Fuzzy-Rough set based methods for attribute reduction is presented here.

متن کامل

A New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)

Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...

متن کامل

A Comparative Study on Decision Rule Induction for incomplete data using Rough Set and Random Tree Approaches

Handling missing attribute values is the greatest challenging process in data analysis. There are so many approaches that can be adopted to handle the missing attributes. In this paper, a comparative analysis is made of an incomplete dataset for future prediction using rough set approach and random tree generation in data mining. The result of simple classification technique (using random tree ...

متن کامل

Improving the Scalability of Reduct Determination in Rough Sets

Rough Set Data Analysis (RSDA) is a non-invasive data analysis approach that solely relies on the data to find patterns and decision rules. Despite its noninvasive approach and ability to generate human readable rules, classical RSDA has not been successfully used in commercial data mining and rule generating engines. The reason is its scalability. Classical RSDA slows down a great deal with th...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013